Artificial Intelligence Interview Questions -Interview of Geeks

Artificial Intelligence Interview Questions

68 Questions

Artificial Intelligence (AI) has made a huge impact across several industries, such as healthcare, finance, telecommunication, business, education, etc., within a short period. Today, almost every company is looking for AI professionals to implement Artificial Intelligence in their systems and provide better customer experience, along with other features. In this Artificial Intelligence Interview Questions, we have compiled a list of some of the most frequently asked questions by interviewers during AI-based job interviews

  1. 1. What is the difference between Strong Artificial Intelligence and Weak Artificial Intelligence?
    Weak AI Strong AI
    Narrow application, with very limited scope Widely applied, with vast scope
    Good at specific tasks Incredible human-level intelligence
    Uses supervised and unsupervised learning to process data Uses clustering and association to process data
    E.g., Siri, Alexa, etc. E.g., Advanced Robotics

  2. 2. What is Artificial Intelligence?

    Artificial Intelligence is a field of computer science wherein the cognitive functions of the human brain are studied and tried to be replicated on a machine/system. Artificial Intelligence is today widely used for various applications like computer vision, speech recognition, decision-making, perception, reasoning, cognitive capabilities, and so on.

  3. 3. List some applications of AI.

    1. Natural language processing
    2. Chatbots
    3. Sentiment analysis
    4. Sales prediction
    5. Self-driving cars
    6. Facial expression recognition
    7. Image tagging

  4. 4. List the programming languages used in AI.
    • Python
    • R
    • Lisp
    • Prolog
    • Java

  5. 5. What is Tower of Hanoi?

    Tower of Hanoi is a mathematical puzzle that shows how recursion might be utilized as a device in building up an algorithm to take care of a specific problem. Using a decision tree and a breadth-first search (BFS) algorithm in AI, we can solve the Tower of Hanoi.

    Tower of Hanoi
  6. 6. What is Turing test?

    The Turing test is a method to test a machine’s ability to match the human-level intelligence. A machine is used to challenge human intelligence, and when it passes the test it is considered intelligent. Yet a machine could be viewed as intelligent without sufficiently knowing how to mimic a human.

    Turing Test image
  7. 7. What is an expert system? What are the characteristics of an expert system?

    An expert system is an Artificial Intelligence program that has expert-level knowledge about a specific area and how to utilize its information to react appropriately. These systems have the expertise to substitute a human expert. Their characteristics include:

    • High performance
    • Adequate response time
    • Reliability
    • Understandability

  8. 8. List the advantages of an expert system.
    • Consistency
    • Memory
    • Diligence
    • Logic
    • Multiple expertise
    • Ability to resion
    • Fast response

  9. 9. What is an A* algorithm search method?

    A* is a computer algorithm that is extensively used for the purpose of finding the path or traversing a graph in order to find the most optimal route between various points called the nodes.

  10. 10. What is a breadth-first search algorithm?

    A breadth-first search (BFS) algorithm, used for searching tree or graph data structures, starts from the root node, then proceeds through neighboring nodes, and further moves toward the next level of nodes.

    Breadth First

    Till the arrangement is found, it produces one tree at any given moment. As this pursuit can be executed utilizing the FIFO (first-in, first-out) data structure, this strategy gives the shortest path to the solution.

  11. 11. What is a depth-first search algorithm?

    Depth-first search (DFS) is based on LIFO (last-in, first-out). A recursion is implemented with LIFO stack data structure. Thus, the nodes are in a different order than in BFS. The path is stored in each iteration from root to leaf nodes in a linear fashion with space requirement.

    Depth First
  12. 12. What is a bidirectional search algorithm?

    In a bidirectional search algorithm, the search begins in forward from the beginning state and in reverse from the objective state. The searches meet to identify a common state. The initial state is linked with the objective state in a reverse way. Each search is done just up to half of the aggregate way.

  13. 13. What is an iterative deepening depth-first search algorithm?

    The repetitive search processes of level 1 and level 2 happen in this search. The search processes continue until the solution is found. Nodes are generated until a single goal node is created. Stack of nodes is saved.

  14. 14. What is a uniform cost search algorithm?

    The uniform cost search performs sorting in increasing the cost of the path to a node. It expands the least cost node. It is identical to BFS if each iteration has the same cost. It investigates ways in the expanding order of cost.

  15. 15. How are game theory and AI related?

    AI system uses game theory for enhancement; it requires more than one participant which narrows the field quite a bit. The two fundamental roles are as follows:

    • Participant design: Game theory is used to enhance the decision of a participant to get maximum utility.
    • Mechanism design: Inverse game theory designs a game for a group of intelligent participants, e.g., auctions.

  16. Artificial Intelligence - Intermediate Interview Questions

  17. 16. Explain Alpha–Beta pruning.

    Alpha–Beta pruning is a search algorithm that tries to reduce the number of nodes that are searched by the minimax algorithm in the search tree. It can be applied to ‘n’ depths and can prune the entire subtrees and leaves.

  18. 17. What is a fuzzy logic?

    Fuzzy logic is a subset of AI; it is a way of encoding human learning for artificial processing. It is a form of many-valued logic. It is represented as IF-THEN rules.

  19. 18. List the applications of fuzzy logic.
    • Facial pattern recognition
    • Air conditioners, washing machines, and vacuum cleaners
    • Antiskid braking systems and transmission systems
    • Control of subway systems and unmanned helicopters
    • Weather forecasting systems
    • Project risk assessment
    • Medical diagnosis and treatment plans
    • Stock trading

  20. 19. What is a partial-order planning?

    A problem has to be solved in a sequential approach to attain the goal. The partial-order plan specifies all actions that need to be undertaken but specifies an order of the actions only when required.

  21. 20. What is FOPL?

    First-order predicate logic is a collection of formal systems, where each statement is divided into a subject and a predicate. The predicate refers to only one subject, and it can either modify or define the properties of the subject.

  22. 21. What is the difference between inductive, deductive, and abductive Machine Learning?
    Inductive Machine Learning Deductive Machine Learning Abductive Machine Learning
    Learns from a set of instances to draw the conclusion Derives the conclusion and then improves it based on the previous decisions It is a Deep Learning technique where conclusions are derived based on various instances
    Statistical Machine Learning such as KNN (K-nearest neighbor) or SVM (Support Vector Machine) Machine Learning algorithm using a decision tree Deep neural networks
    A ⋀ B ⊢ A → B (Induction) A ⋀ (A → B) ⊢ B (Deduction) B ⋀ (A → B) ⊢ A (Abduction)

  23. 22. List the different algorithm techniques in Machine Learning.
    • Supervised Learning
    • Unsupervised Learning
    • Semi-supervised Learning
    • Reinforcement Learning
    • Transduction
    • Learning to Learn

  24. 23. What is Deep Learning?

    Deep Learning is a subset of Machine Learning which is used to create an artificial multi-layer neural network. It has self-learning capabilities based on previous instances, and it provides high accuracy.

  25. 24. Differentiate between supervised, unsupervised, and reinforcement learning.
    Differentiation Based on Supervised Learning Unsupervised Learning Reinforcement Learning
    Features The training set has both predictors and predictions. The training set has only predictors. It can establish state-of-the-art results on any task.
    Algorithms Linear and logistic regression, support vector machine, and Naive Bayes K-means clustering algorithm and dimensionality reduction algorithms Q-learning, state-action-reward-state-action (SARSA), and Deep Q Network (DQN)
    Uses Image recognition, speech recognition, forecasting, etc. Preprocessing data, pre-training supervised learning algorithms, etc. Warehouses, inventory management, delivery management, power system, financial systems, etc.

  26. 25. Differentiate between parametric and non-parametric models.
    Differentiation Based on Parametric Model Non-parametric Model
    Features A finite number of parameters to predict new data Unbounded number of parameters
    Algorithm Logistic regression, linear discriminant analysis, perceptron, and Naive Bayes K-nearest neighbors, decision trees like CART and C4.5, and support vector machines
    Benefits Simple, fast, and less data Flexibility, power, and performance
    Limitations Constrained, limited complexity, and poor fit More data, slower, and overfitting

  27. 26. Name a few Machine Learning algorithms you know.
    • Logistic regression
    • Linear regression
    • Decision trees
    • Support vector machines
    • Naive Bayes, and so on

  28. 27. LWhat is Naive Bayes?

    Naive Bayes Machine Learning algorithm is a powerful algorithm for predictive modeling. It is a set of algorithms with a common principle based on Bayes Theorem. The fundamental Naive Bayes assumption is that each feature makes an independent and equal contribution to the outcome.

  29. 28. What is perceptron in Machine Learning?

    Perceptron is an algorithm that is able to simulate the ability of the human brain to understand and discard; it is used for the supervised classification of the input into one of the several possible non-binary outputs.

    Perceptron in Machine
  30. 29. List the extraction techniques used for dimensionality reduction.
    • Independent component analysis
    • Principal component analysis
    • Kernel-based principal component analysis

  31. 30. Is KNN different from K-means Clustering?
    KNN K-means Clustering
    Supervised Unsupervised
    Classification algorithms Clustering algorithms
    Minimal training model Exhaustive training model
    Used in the classification and regression of the known data Used in population demographics, market segmentation, social media trends, anomaly detection, etc.

  32. 31. What is ensemble learning?

    Ensemble learning is a computational technique in which classifiers or experts are strategically formed and combined. It is used to improve classification, prediction, function approximation, etc. of a model.

    Ensemble Learning
  33. 32. List the steps involved in Machine Learning.
    • Data collection
    • Data preparation
    • Choosing an appropriate model
    • Training the dataset
    • Evaluation
    • Parameter tuning
    • Predictions

  34. 33. What is a hash table?

    A hash table is a data structure that is used to produce an associative array which is mostly used for database indexing.

    Hash Table
  35. 34. What is regularization in Machine Learning?

    Regularization comes into the picture when a model is either overfit or underfit. It is basically used to minimize the error in a dataset. A new piece of information is fit into the dataset to avoid fitting issues.

  36. 35. What are the components of relational evaluation techniques?
    • Data acquisition
    • Ground truth acquisition
    • Cross validation technique
    • Query type
    • Scoring metric
    • Significance test

  37. 36. What is model accuracy and model performance?

    Model accuracy, a subset of model performance, is based on the model performance of an algorithm. Whereas, model performance is based on the datasets we feed as inputs to the algorithm.

  38. 37. Define F1 score.

    F1 score is the weighted average of precision and recall. It considers both false positive and false negative values into account. It is used to measure a model’s performance.

    F1 Score
  39. 38. List the applications of Machine Learning.
    • Image, speech, and face detection
    • Bioinformatics
    • Market segmentation
    • Manufacturing and inventory management
    • Fraud detection, and so on

  40. 39. Can you name three feature selection techniques in Machine Learning?
    • Univariate Selection
    • Feature Importance
    • Correlation Matrix with Heatmap

  41. 40. What is a recommendation system?

    A recommendation system is an information filtering system that is used to predict user preference based on choice patterns followed by the user while browsing/using the system.

  42. Artificial Intelligence - Advanced Interview Questions

  43. 41. What methods are used for reducing dimensionality?

    Dimensionality reduction is the process of reducing the number of random variables. We can reduce dimensionality using techniques such as missing values ratio, low variance filter, high correlation filter, random forest, principal component analysis, etc.

  44. 42. List different methods for sequential supervised learning.
    • Sliding window methods
    • Recurrent sliding windows methods
    • Hidden Markov models
    • Maximum entropy Markov models
    • Conditional random fields
    • Graph transformer networks

  45. 43. What are the advantages of neural networks?
    • Require less formal statistical training
    • Have the ability to detect nonlinear relationships between variables
    • Detect all possible interactions between predictor variables
    • Availability of multiple training algorithms

  46. 44. What is Bias–Variance tradeoff?

    Bias error is used to measure how much on an average the predicted values vary from the actual values. In case a high-bias error occurs, we have an under-performing model.

    Biase variation tradeoff

  47. 45. What is TensorFlow?

    TensorFlow is an open-source Machine Learning library. It is a fast, flexible, and low-level toolkit for doing complex algorithms and offers users customizability to build experimental learning architectures and to work on them to produce desired outputs.

  48. 46. How to install TensorFlow?

    TensorFlow Installation Guide:

    CPU : pip install tensorflow-cpu

    GPU : pip install tensorflow-gpu

  49. 47. What are the TensorFlow objects?
    1. Constants
    2. Variables
    3. Placeholder
    4. Graphs
    5. Session

  50. 48. What is a cost function?

    A cost function is a scalar function that quantifies the error factor of the neural network. Lower the cost function better the neural network. For example, while classifying the image in the MNIST dataset, the input image is digit 2, but the neural network wrongly predicts it to be 3.

  51. 49. List different activation neurons or functions.
    1. Linear neuron
    2. Binary threshold neuron
    3. Stochastic binary neuron
    4. Sigmoid neuron
    5. Tanh function
    6. Rectified linear unit (ReLU)

  52. 50. What are the hyper parameters of ANN?
    • Learning rate: The learning rate is how fast the network learns its parameters.
    • Momentum: It is a parameter that helps to come out of the local minima and smoothen the jumps while gradient descent.
    • Number of epochs: The number of times the entire training data is fed to the network while training is referred to as the number of epochs. We increase the number of epochs until the validation accuracy starts decreasing, even if the training accuracy is increasing (overfitting).

  53. 51. What is vanishing gradient?

    As we add more and more hidden layers, backpropagation becomes less useful in passing information to the lower layers. In effect, as information is passed back, the gradients begin to vanish and become small relative to the weights of the network.

  54. 52. What are dropouts?

    Dropout is a simple way to prevent a neural network from overfitting. It is the dropping out of some of the units in a neural network. It is similar to the natural reproduction process, where the nature produces offsprings by combining distinct genes (dropping out others) rather than strengthening the co-adapting of them.

  55. 53. Define LSTM.

    Long short-term memory (LSTM) is explicitly designed to address the long-term dependency problem, by maintaining a state of what to remember and what to forget.

  56. 54. List the key components of LSTM.
    • Gates (forget, Memory, update, and Read)
    • Tanh(x) (values between −1 and 1)
    • Sigmoid(x) (values between 0 and 1)

  57. 55. List the variants of RNN.
    • LSTM: Long Short-term Memory
    • GRU: Gated Recurrent Unit
    • End-to-end Network
    • Memory Network

  58. 56. What is an autoencoder? Name a few applications.

    An autoencoder is basically used to learn a compressed form of the given data. A few applications of an autoencoder are given below:

    • Data denoising
    • Dimensionality reduction
    • Image reconstruction
    • Image colorization

  59. 57. What are the components of the generative adversarial network (GAN)? How do you deploy it?

    Components of GAN:

    • Generator
    • Discriminator

    Deployment Steps:

    • Train the model
    • Validate and finalize the model
    • Save the model
    • Load the saved model for the next prediction

  60. 58. What are the steps involved in the gradient descent algorithm?

    Gradient descent is an optimization algorithm that is used to find the coefficients of parameters that are used to reduce the cost function to a minimum.

    • Step 1: Allocate weights (x,y) with random values and calculate the error (SSE)
    • Step 2: Calculate the gradient, i.e., the variation in SSE when the weights (x,y) are changed by a very small value. This helps us move the values of x and y in the direction in which SSE is minimized
    • Step 3: Adjust the weights with the gradients to move toward the optimal values where SSE is minimized
    • Step 4: Use new weights for prediction and calculating the new SSE
    • Step 5: Repeat Steps 2 and 3 until further adjustments to the weights do not significantly reduce the error

  61. 59. What do you understand by session in TensorFlow?

    Syntax: Class Session

    It is a class for running TensorFlow operations. The environment is encapsulated in the session object wherein the operation objects are executed and Tensor objects are evaluated.

    # Build a graph
    x = tf.constant(2.0)
    y = tf.constant(5.0)
    z = x * y
    # Launch the graph in a session
    sess = tf.Session()
    # Evaluate the tensor `z`

  62. 60. What do you mean by TensorFlow cluster?

    TensorFlow cluster is a set of ‘tasks’ that participate in the distributed execution of a TensorFlow graph. Each task is associated with a TensorFlow server, which contains a ‘master’ that can be used to create sessions and a ‘worker’ that executes operations in the graph. A cluster can also be divided into one or more ‘jobs’, where each job contains one or more tasks.

  63. 61. How to run TensorFlow on Hadoop?

    To use HDFS with TensorFlow, we need to change the file path for reading and writing data to an HDFS path. For example:

    filename_queue = tf.train.string_input_producer([
    "hdfs://namenode:8020/path/to/file2.csv", ])

  64. 62. What are intermediate tensors? Do sessions have lifetime?

    The intermediate tensors are tensors that are neither inputs nor outputs of the call, but are in the path leading from the inputs to the outputs; they will be freed at or before the end of the call.

    Sessions can own resources, few classes like tf.Variable, tf.QueueBase, and tf.ReaderBase, and they use a significant amount of memory. These resources (and the associated memory) are released when the session is closed, by calling tf.Session.close.

  65. 63. What is the lifetime of a variable?

    When we first run the tf.Variable.initializer operation for a variable in a session, it is started. It is destroyed when we run the tf.Session.close operation.

  66. 64. Is it possible to solve logical inference in propositional logic?

    Yes, logical inference can easily be solved in propositional logic by making use of three concepts:

    • Logical equivalence
    • Process satisfaction
    • Validation checking

  67. 65. How does face verification work?

    Face verification is used by a lot of popular firms these days. Facebook is famous for the usage of DeepFace for its face verification needs.

    There are four main things you must consider when understanding how face verification works:

    • Input: Scanning an image or a group of images
    • Process:
      • Detection of facial features
      • Feature comparison and alignment
      • Key pattern representation
      • Final image classification
    • Output: Face representation, which is a result of a multilayer neural network
    • Training data: Involves the usage of thousands of millions of images

  68. 66. What are some of the algorithms used for hyperparameter optimization?

    There are many algorithms that are used for hyperparameter optimization, and following are the three main ones that are widely used:

    • Bayesian optimization
    • Grid search
    • Random search

  69. 67. What is overfitting? How is overfitting fixed?

    Overfitting is a situation that occurs in statistical modeling or Machine Learning where the algorithm starts to over-analyze data, thereby receiving a lot of noise rather than useful information. This causes low bias but high variance, which is not a favorable outcome.

    Overfitting can be prevented by using the below-mentioned methods:

    • Early stopping
    • Ensemble models
    • Cross-validation
    • Feature removal
    • Regularization

  70. 68. How is overfitting avoided in neural networks?

    Overfitting is avoided in neural nets by making use of a regularization technique called ‘dropout.’

    By making use of the concept of dropouts, random neurons are dropped when the neural network is being trained to use the model doesn’t overfit. If the dropout value is too low, it will have a minimal effect. If it is too high, the model will have difficulty in learning.

Last Updated:

Trending Technologies Interview Questions

@InterviewofGeeks, Some rights reserved.